dataset_details.py 5.62 KB
# coding: utf-8

"""
    FastAPI

    No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator)

    The version of the OpenAPI document: 0.1.0
    Generated by OpenAPI Generator (https://openapi-generator.tech)

    Do not edit the class manually.
"""  # noqa: E501


from __future__ import annotations
import pprint
import re  # noqa: F401
import json

from datetime import datetime
from pydantic import BaseModel, ConfigDict, Field, StrictInt, StrictStr
from typing import Any, ClassVar, Dict, List, Optional
from typing import Optional, Set
from typing_extensions import Self

class DatasetDetails(BaseModel):
    """
    DatasetDetails
    """ # noqa: E501
    user_id: Optional[StrictInt] = Field(default=0, alias="userId")
    dataset_name: StrictStr = Field(alias="datasetName")
    dataset_type: Optional[StrictInt] = Field(default=None, alias="datasetType")
    dataset_short_info: Optional[StrictStr] = Field(default=None, alias="datasetShortInfo")
    dataset_tags: Optional[StrictStr] = Field(default=None, alias="datasetTags")
    dataset_id: StrictInt = Field(alias="datasetId")
    dataset_type_interp: Optional[StrictStr] = Field(default=None, alias="datasetTypeInterp")
    dataset_status: StrictInt = Field(alias="datasetStatus")
    dataset_status_interp: Optional[StrictStr] = Field(default=None, alias="datasetStatusInterp")
    created_on: Optional[datetime] = Field(alias="createdOn")
    modified_on: Optional[datetime] = Field(alias="modifiedOn")
    __properties: ClassVar[List[str]] = ["userId", "datasetName", "datasetType", "datasetShortInfo", "datasetTags", "datasetId", "datasetTypeInterp", "datasetStatus", "datasetStatusInterp", "createdOn", "modifiedOn"]

    model_config = ConfigDict(
        populate_by_name=True,
        validate_assignment=True,
        protected_namespaces=(),
    )


    def to_str(self) -> str:
        """Returns the string representation of the model using alias"""
        return pprint.pformat(self.model_dump(by_alias=True))

    def to_json(self) -> str:
        """Returns the JSON representation of the model using alias"""
        # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
        return json.dumps(self.to_dict())

    @classmethod
    def from_json(cls, json_str: str) -> Optional[Self]:
        """Create an instance of DatasetDetails from a JSON string"""
        return cls.from_dict(json.loads(json_str))

    def to_dict(self) -> Dict[str, Any]:
        """Return the dictionary representation of the model using alias.

        This has the following differences from calling pydantic's
        `self.model_dump(by_alias=True)`:

        * `None` is only added to the output dict for nullable fields that
          were set at model initialization. Other fields with value `None`
          are ignored.
        """
        excluded_fields: Set[str] = set([
        ])

        _dict = self.model_dump(
            by_alias=True,
            exclude=excluded_fields,
            exclude_none=True,
        )
        # set to None if dataset_type (nullable) is None
        # and model_fields_set contains the field
        if self.dataset_type is None and "dataset_type" in self.model_fields_set:
            _dict['datasetType'] = None

        # set to None if dataset_short_info (nullable) is None
        # and model_fields_set contains the field
        if self.dataset_short_info is None and "dataset_short_info" in self.model_fields_set:
            _dict['datasetShortInfo'] = None

        # set to None if dataset_tags (nullable) is None
        # and model_fields_set contains the field
        if self.dataset_tags is None and "dataset_tags" in self.model_fields_set:
            _dict['datasetTags'] = None

        # set to None if dataset_type_interp (nullable) is None
        # and model_fields_set contains the field
        if self.dataset_type_interp is None and "dataset_type_interp" in self.model_fields_set:
            _dict['datasetTypeInterp'] = None

        # set to None if dataset_status_interp (nullable) is None
        # and model_fields_set contains the field
        if self.dataset_status_interp is None and "dataset_status_interp" in self.model_fields_set:
            _dict['datasetStatusInterp'] = None

        # set to None if created_on (nullable) is None
        # and model_fields_set contains the field
        if self.created_on is None and "created_on" in self.model_fields_set:
            _dict['createdOn'] = None

        # set to None if modified_on (nullable) is None
        # and model_fields_set contains the field
        if self.modified_on is None and "modified_on" in self.model_fields_set:
            _dict['modifiedOn'] = None

        return _dict

    @classmethod
    def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
        """Create an instance of DatasetDetails from a dict"""
        if obj is None:
            return None

        if not isinstance(obj, dict):
            return cls.model_validate(obj)

        _obj = cls.model_validate({
            "userId": obj.get("userId") if obj.get("userId") is not None else 0,
            "datasetName": obj.get("datasetName"),
            "datasetType": obj.get("datasetType"),
            "datasetShortInfo": obj.get("datasetShortInfo"),
            "datasetTags": obj.get("datasetTags"),
            "datasetId": obj.get("datasetId"),
            "datasetTypeInterp": obj.get("datasetTypeInterp"),
            "datasetStatus": obj.get("datasetStatus"),
            "datasetStatusInterp": obj.get("datasetStatusInterp"),
            "createdOn": obj.get("createdOn"),
            "modifiedOn": obj.get("modifiedOn")
        })
        return _obj